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КОНФОРМАЦИОННЫЙ АНАЛИЗ БИЦИКЛО[3,3,1]НОНАНОВ

Н. С. Зефиров

Развитие принципов конформационного анализа связано главным об-
разом с использованием в качестве модельных соединений производных
циклогексана и его гетероаналогов. В настоящей работе обобщены данные
по конформационному анализу другой системы, содержащей шестичленные
циклы, а именно — бицикло [3, 3, 1]нонана. В обзоре рассмотрен комплекс
конформационных проблем, который был успешно решен с использованием
этой бициклической системы, сформулированы основные принципы и про-
демонстрированы большие возможности использования этой модели для
конформационных исследований.
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I. ВВЕДЕНИЕ

Концепции конформационного анализа являются весьма эффектив-
ным инструментом в руках химика, позволяющим глубже понять меха-
низм протекания самых различных процессов. Отсюда ясна актуальность
задачи по углублению понятий и теорий динамической стереохимии.
Общие положения конформационного анализа базируются в значитель-
ной мере на данных по изучению производных циклогексана, его поли-
циклических производных и гетероаналогов, как, например, производных
моносахаридов, шестичленных гетероциклов и т. д. Тем не менее, не все-
гда использование производных циклогексана бывает оптимальным. Так,
например, одним из принципиальных вопросов является изучение фак-
торов, определяющих возможность существования и энергию гибких
форм (ванна, «твист-форма»), а также вопросов реакционной способ-
ности функциональных групп в этих конформациях. Однако эта пробле-
ма наталкивается на отсутствие удобных модельных соединений цикло-
гексанового ряда, которые имели бы конформацию ванны и содержали
бы достаточно широкий набор функциональных групп для их изучения.
Действительно, большинство соединений этого типа принимает форму
несколько деформированного (обычно уплощенного') кресла, причем
разница в свободных энергиях форм ванны и кресла довольно велика)
(5—7 ккал/моль 2 · 3 ) . Поэтому многочисленные подходы к этой пробле-
ме связаны с синтезом циклических структур (часто содержащих гете-
роатомы), которые могли бы существовать в гибкой конформации, либо
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отдельные фрагменты которых могли бы моделировать геометрические
соотношения в гибкой конформации циклогексана (например4·5).

В этой связи большой интерес представляет изучение производных
бицикло[3, 3, 1]нонана. Подчеркнем, что еще в начале нашего столетия
Рабе 6 применил >бицикло[3, 3, 1]нонановую систему для решения неко-
торых вопросов теоретической органической химии.

Для самого бицикло[3, 3, 1]нонана можно представить три свободных
от углового напряжения конформации: двойное кресло (I), кресло-ван-
на (II) и двойная ванна (III). В 1922 г. Меервейн на основании интуи-
тивных соображений предложил для так называемого «эфира Меервей-
на» (IV) конформацию двойного кресла7. Однако систематическое изу-
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чение данной конформационной проблемы началось немногим более де-
сяти лет назад, и существенный прогресс был достигнут буквально в по-
следние годы. Библиография по этому вопросу стремительно увеличи-
вается, и уже сейчас достигнут значительный успех в понимании общих
проблем конформационного анализа бициклононанов. В настоящей ра-
боте сделана попытка рассмотреть современное состояние вопроса,
сформулировать основные конформационные проблемы, которые могут
решаться с привлечением модельных бициклононановых систем, и оценить
перспективу исследований в этой области. Материал рассматривается
не в историческом, а в логическом аспекте. Основанием для этого, поми-
мо большей научной строгости, может служить значительное развитие
этой проблемы в последнее время, что затрудняет, а иногда и делает
просто невозможным проследить исторический генезис идей и приори-
тетные вопросы.

II. ОБЩИЕ ПРОБЛЕМЫ КОНФОРМАЦИОННОГО АНАЛИЗА
БИЦИКЛ О [3,3,1] НОНАНОВ

Хотя конформации (I) — (III) свободны от углового напряжения,тем
не менее ни одна из них не свободна от сильного дестабилизирующего
взаимодействия несвязанных атомов. Для ваннообразных конформации
(II) и (III) дестабилизация обусловлена теми же факторами, что и для
конформации ванны в циклогексане, а именно наличием заслоненных
этановых конформации и флагшток-флагштоковым отталкиванием ато-
мов водорода 2. В структуре кресло-ванна (II) ваннообразный цикл не
может сильно деформироваться в сторону твист-формы из-за жесткости
сочленения со вторым циклом. Можно представить себе, вероятно, лишь
умеренное скручивание. Однако, так как на каждую конформацию кре-
сло-кресло (I) в процессе инверсии получается две конформации кресло-
ванна (II), образование последней происходит с вдвое большей вероят-
ностью. Иными словами, образование формы (II) предпочтительно в от-
ношении энтропии на величину R In 2. Конформация двойной ванны (III),
напротив, должна соответствовать максимуму на энергетической кривой.
Минимуму будет соответствовать скрученная конформация, которую мож-
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но назвать двойной т,вист-формой. В последней флагштоковые и засло-
ненные взаимодействия, характерные для неискаженной формы (III),
будут сильно уменьшены. Эта конформация является единственной гиб-
кой формой и, следовательно, также более выгодна с точки зрения эн-
тропийного фактора.

Обычно конформация кресла сильно стабилизируется за счет энталь-
пийного фактора (см., например,8). Однако для конформации двойного
кресла (I) существует специфический дестабилизирующий фактор, а
именно чрезвычайно сильное отталкивание эндо-атомов водорода в по-
ложениях 3 и 7. Простые расчеты с использованием нормальных значе-
ний углов и длин связей показывают, что расстояние между 3-эндо- и 7-
зкдо-атомами водорода должно составлять всего 0,81 А3! Напомним,что
ван-дер-ваальсов радиус водорода составляет 1,2 А9. Поэтому в первых
исследованиях авторы отдавали предпочтение конформации кресло-ван-
на (II) (например10·11, см., однако, 1 2 ) , и эта точка зрения нашла отра-
жение в учебниках 13.

Необходимо, однако, подчеркнуть, что вышеприведенные структуры
являются предельными и легко можно представить, что в конкретных
случаях будут наблюдаться более или менее значительные искажения
этих идеальных форм, что приведет к уменьшению напряжения. Так, на-
пример, очевидно, что уплощение шестичленных колец в конформации
(I), а также изгиб связей С—Η в положениях 3 и 7 (то есть уменьшение
угла Η—С3—-Н или Η—С,—Н) могут привести к уменьшению внутренней
энергии. Ниже будет показано, что такие изменения геометрии действи-
тельно имеют место, в силу чего конформация двойного кресла обычно
является наиболее устойчивой.

Далее, можно достаточно обоснованно определить некоторые кон-
формационные тенденции, возникающие при переходе к функциональ-
ным производным и связанные с введением заместителей гетероатомов
и т. д.

Во-первых, достаточно очевидно, что введение в положения эндо-3
или эндо-7 заместителя более объемистого, чем атом водорода, вызовет
резкий рост стерического отталкивания в конформации двойного кресла
(V). Это приведет к резкой дестабилизации такой конформации. Из
двух альтернативных конформации кресло-ванна (VI и VII) более ста-
бильной должна быть конформация (VI), имеющая заместитель в буш-
притном положении [что примерно эквивалентно положению заместите-
ля в экваториальной конформации (Vila)].

( V I I , R - H , R , = X ;

V l l a , R = X , R , = H )

Во-вторых, эндо-положения 3 и 7 конформации (I) эквивалентны ак-
сиальному положению для производных циклогексана типа (NVIII).По-
этому функциональное производное типа (V) или (VII) дополнительно
испытывает два 1,3-аксиальных взаимодействия, аналогичных (VIII).
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(XI)

Хотя по величине такое взаимодействие должно быть отлично от на-
блюдаемого в циклогексане в силу различий в геометрии, тем не менее
можно представить, что для очень объемистой группы (X) в соединении
(V) такое взаимодействие также должно приводить к дестабилизации
формы двойного кресла. Для монофункционального производного типа
(V) этот фактор неотличим от предыдущего, связанного с 3,7-отталки-
ванием [данный фактор будет, очевидно, сказываться на относительной
стабильности форм (VI) и (VII), сильно благоприятствуя конформации
(VI)]. Однако для 3,7-дизамещенных производных (IX) этот фактор мо-
жет стабилизировать конформацию двойной ванны (XI), а не конфор-
мацию кресло-ванна (X).

В-третьих, можно определить некоторые тенденции, связанные с вве-
дением в скелет бициклононана тригональных атомов углерода. Так, оче-
видно, что введение тригонального атома в положение 9 должно приво-
дить к некоторой стабилизации ваннообразных конформации (II) и
(III) из-за снятия флагшток-флагштокового взаимодействия, хотя ап-
риорно величину такой стабилизации предсказать затруднительно. Да-
лее, введение тригонального атома в положение 3 (например, соедине-
ние XII) приведет к уменьшению 3—7 отталкивания и, следовательно,
к стабилизации формы двойного кресла. Введение двойной связи в поло-
жения 2, 3, как в XIII, также должно привести к сильному уплощению
циклогексенового кольца и резкому уменьшению 3—7-отталкивания.

ΐ
-X

СН2 (XV, Х=О)

(хп) шп) (xiy) (xyn, x=s) (xvi)

В заключение данного раздела следует специально отметить, что
многие вопросы конформационного анализа бицикло[3, 3, 1]нонанов изу-
чались на примере гетероаналогов этой системы. В общих чертах гео-
метрия бициклических молекул, содержащих «обычные» гетероатомы
(кислород, азот и даже серу),достаточно хорошо моделирует геометрию

углеродного аналога. Не случайно, например, конформационный анализ
шестичленных гетероциклов в общих чертах выявляет те же основные
конформащгонные закономерности, какие были выведены для произ-
водных циклогёк^ана " • 1 4 · 1 5 . Поэтому и в данном случае можно заранее
предсказать некоторые конформационные особенности. Так, введение
гетероатома в положение 3, как в XIV, должно приводить к стабилиза-
ции конформации двойного кресла ч силу уменьшения 3—7-отталкива-
ния. Кроме того, введение гетероатомов в скелет бициклононана при-
ведет к изменениям геометрии, и эти изменения в значительной мере бу-
дут зависеть от сравнительной длины связей С—С и С — гетероатом.
Если последняя значительно короче, то введение гетероатомов в поло1-
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жения 2, 4 как в XV, или 1, 5, как в XVI, должно приводить к увеличе-
нию 3—7-отталкивания. По-видимому, должно быть справедливо и об-
ратное,- а именно уменьшение 3—7-отталкивания с увеличением связи
С — гетероатом, как в соединении (XVII).

Однако в настоящее время известно большое число «аномалий», «эф-
фектов», специфичных для гетероциклических соединений, что связано
с наличием электростатических взаимодействий гетероатомов, взаимо-
действий неподеленных электронных пар и т. д. '• 9· 1β~27. Поэтому необ-
ходимо критически рассматривать данные по гетероаналогам, учиты-
вая специфику изучаемых модельных соединений. С другой стороны,
применение гетероаналогов существенно расширяет круг проблем, ко-
торые могут быть решены с использованием данной бициклической мо-
дели.

III. РАСЧЕТЫ ГЕОМЕТРИИ И ЭНЕРГИИ

Для расчета геометрии и относительной энергии молекул в настоя-
щее время используют либо полуэмпирические квантово-химические ме-
тоды, либо классический подход Уэстхеймера28·29. Последний метод в его
современных модификациях широко используется для расчета геометрии
довольно сложных соединений3· 30~36. Первый расчет молекулы бици-
кло[3, 3, 1]нонана по тому методу был проведен в работе Глейхера и
Шлейера " . Авторы рассчитали геометрию только для конформации
двойного кресла. При этом расстояние С 3 . . . С, было оценено в 2,96 А
(ср. с 2,56 А для идеальной формы 3 · 3 8), а углы C t—С 2—С а в 113°. Эти
данные свидетельствуют о значительном уплощении «крыльев» молеку-
лы. Более строгий расчет был проведен в работах Аллинджера и сотр.
3 · 3 8 . Геометрия двойного кресла и в этом случае довольно сильно отлича-
ется от идеальной. Прежде всего расстояние С 3 . . . С, увеличено до
3,18 А, а углы Н 3 —С 3 —H s и Н 7 —С 7 —Н 7 уменьшены до 95,2°. Это приво-
дит к увеличению расстояния эндо-\\3... эндо-Н-, с 0,81 А идеальной
структуры до 2,25 А. Тем не менее, несмотря на значительное искаже-
ние структуры и сильное несвязанное взаимодействие, конформация
двойного кресла (I) является более стабильной, чем конформация крес-
ло-ванна (II). Расчет разности энтальпий дает величину 2,73 ккал/моль
в пользу конформации (Ι) 3 · 3 8 . Другой расчет дает для этой величины
значение 3,7 ккал/моль 39. Авторы указывают, однако, что эта величина,
возможно, завышена.

В любом случае вычисленное значение АН значительно меньше ве-
личины 5,9 ккал/моль, принятой для разницы энтальпий гибкой и крес-
ловидной форм в циклогексане ζ· 8 · 4 0 . Очевидно, что такое различие обу-
словлено значительной относительной дестабилизацией двойного кресла.

Для 3,3-диметилбицикло[3, 3, 1]нонана ситуация существенно отлич-
ная. Как было рассчитано в работе 39, конформация (XVIII) на 3,9 ккал/
/моль более стабильна, чем (XIX).

Me

м

Me M e

(XV1I1) (XIX) (хх) ( χ χ ΐ )

Этим методом была также рассчитана геометрия некоторых карбе-
ниевых ионов, включенных в скелет бицикло[3,3,1]нонана,37·39. Так было
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найдено, что конформация двойного кресла (XX) для2-бицикло[3,3,1]но-
нильного катиона стабильней конформации (XXI) на 2,7 ккал/моль39.
Для катиона (XXII) конформация кресло-ванна (XXII) более стабиль-
на, чем двойное кресло, с разницей в энергиях 4,4 ккал/моль зэ. Данные
по карбениевым ионам интересны не только сами по себе, но и как мо-
дельные для соединений с тригональным атомом углерода, например,
вышеприведенный расчет подтверждает большую устойчивость конфор-
мации кресло-ванна для кетона (XXIII) 39:

(XXII) (XXIII) (XXIV, а-Х- Br; (X-XV)

б-Х= С1)

Полуэмпирические квантово-химические методы — РМХ и CNDO/2
были использованы для расчета конформации азагетероаналогов би-
цикло[3,3,1]нонана " . Так, гидробромид (XXIV а) имеет минимум энер-
гии в конформации двойного кресла с расстоянием С , . . . Ν,, равным
2,9 А. Диметилбиспидин (XXV) также имеет минимум для конформации
двойного кресла, но расстояние Ν 3 . . . Ν7 равно 2,5 А, что близко соответ-
ствует расстоянию в идеальной конформации. Очевидно, что основное
различие связано с наличием 3- и 7-эндо-атомов водорода в соединении
(XXIV). Отметим, также, что вопрос о конформациях 3,7-дигетероана-
логов представляет особый интерес в связи с проблемой диполь-диполь-
ного или орбитального взаимодействия гетероатомов (см. раздел VI, 5).

IV. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ
О ГЕОМЕТРИИ ПРОИЗВОДНЫХ БИЦИКЛ О [3,3,1] НОНАНА

Первые же работы по рентгеноструктурному анализу показали, что
для большинства карбо- и гетероциклических производных бицикло[3|,
3,1]нонана характерна конформация двойного кресла. Впервые Доб-
лер и Данитц4 2 показали, что гидробромид (XXIV а) 3-азабициклонона-
на имеет конформацию уплощенного двойного кресла. При этом рассто-
яние Ν 3 . . . С7 увеличено до 3,02 А за счет уплощения (ср. расчет в " ) .
Расстояние эндо-атомов водорода Н 3 . . . Н7 можно оценить в 1,8 А. В ра-
ботах "•" была определена молекулярная структура карбоциклического
соединения — брозилата (XXVI). Оба кольца в XXVI имеют отчетлива
выраженную кресловидную конформацию, но структура значительно
отклоняется от идеальной формы и оба цикла значительно уплощены.

CH,OSO.,C6H4Br V V зО Sr \ί )(:

С N С Ν

(XXVI) (XXVII) (XXVIII) (XXIX)

Углы С2С3С4 и С6С,С8 равны в среднем 114°, а расстояние С 3 . . . С7 —
3,05 А. В работе" определена структура хлоркетона (XXVII). Стериче-
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ское отталкивание метиленовых групп также приводит к уплощению мо-
лекулы, и расстояние С 3 . . . С7 составляет 3,11 А, что гораздо больше,
чем 2,1 А, ожидаемое для идеального бициклононан-9-она. Подчеркнем,
что ни наличие тригонального атома в положении 9, ни присутствие 2-
э/сзо-заместителя в кетоне (XXVII) не приводят к дестабилизации кон-
формации двойного кресла. Упомянем также о данных относительно
структуры 3,7-дигетероаналогов бициклононана. В работах46· " было най-
дено, что 3-окса-7,9-дитиабицикло[3,3,1]нонан (XXVIII) существует в
конформации двойного кресла. Интересно, что плоскость, проходящая
через атомы CiS^Cj, пересекает плоскость атомов С2О3С4 под углом 2°,
а плоскость атомов C6S,C8 —под углом 32°45/. Большое уплощение ди-
тианового цикла связано, очевидно, с меньшим барьером вращения свя-
зи С—S по сравнению со связью С—О (дискуссию см. 8). Конформация
двойного кресла была также найдена для соединения (XXIX), причем
углы NiCaNj и N,C8N7 составляли 133—136°48.

В литературе есть сведения и о геометрии самого бицикло[3,3,1]нона-
на 49. Он также имеет конформацию двойного кресла, поскольку обра-
зует смешанные кристаллы с адамантаном, в котором эта «конформа-
ция» жестко закреплена. На основе параметров решетки было сделано
заключение об уплощении молекулы; к сожалению, параметры молеку-
лярной структуры определены не были (о других данных рентгенострук-
турного анализа см. разделы VI, 5 и VI, 6).

Таким образом, данные рентгеноструктурного исследования показы-
вают, что в кристалле предпочтительной является конформация двойно-
го кресла с сильным уплощением крыльев молекулы, что приводит к уве-
личению валентных углов в положениях 2, 3, 4, 6, 7 и 8 в среднем на 4°
по сравнению с нормальным значением.

Имеются определенные данные о геометрии соединений рассматри-
ваемого типа в растворе. Так, идентичность ИК-спектров в растворе и в
твердой фазе для соединений (XXVI) и (XXVII) "•44·50 позволяет рас-
пространить данные рентгеноструктурного анализа и на геометрию мо-
лекулы в растворе. Развитие изучения молекулярной геометрии в раст-
воре более всего связано с двумя модификациями метода ЯМР. Во-пер-
вых, это использование сдвиговых реагентов м · 5 2 . Так, в работе 53 про-
ведено изучение индуцированных химсдвигов в присутствии Eu(DPM)3*
для 1-оксиметил-3-7-диметиленбицикло[3,3,1]нонана (XXX).

COPh
сн,он

COPh

(XXX) . (XXXI) (XXXII)

о

(ХХХШ)

Расстояние С 3 . . . С7 было оценено в 3,1 А, что согласуется со струк-
турой двойного кресла (ограничения метода см. раздел VI, 6).

Во-вторых, удобным инструментом для изучения геометрии шести-
членных систем является так называемый «^-метод» ЯМР 5 4-". В част-
ности, этот метод был применен для изучения 1,5-диазабицикло[3,3,1]но-
нана (XVI, X = N) и его пентаметиленового производного (XXXI) 58.
Константы спин-спинового взаимодействия для фрагмента—СН2—СН2—
в этих соединениях указывают на сильное уплощение, что приводит к
уменьшению диэдрального угла N1C2CsC4 до 48 и 45°, соответственно

* DPM — дипивалоилметан.
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(ср. с углом 54,5° для циклогексана ' ) . Это хорошо коррелирует с рент-
геноструктурными исследованиями: аналогичные диэдральные углы со-
единений (XXVI) находятся в пределах 43,6—45,2° 44~58; для соедине- \ |
ния (XXIV а) диэдральные углы равны 43,0° для циклогексанового и
50,2° для пиперидинового колец 4 2 · 5 8.

Как показано в разделе II, появление ваннообразных конформаций,
(II) и (III) можно ожидать в случае резкого усиления несвязных вза-
имодействий, что обычно имеет место при введении объемистых замес-
тителей в 3-зндо-положение. Первым изученным соединением этой се-
рии был 9-бензоил-2-э/сзо-окси-3-эн<Зо-бром-9-азабицикло[3,3,1]нонав
(XXXII) 5 9 · 6 0 .

Как и следовало ожидать, замещенное кольцо принимает форму ван-
ны. Амддный атом азота Ν9 является плоским, в силу чего молекула
(XXXII) по геометрии сходна с бицикло[3,3,1]нонан-9-оном (например,
XXVII). Расстояние С 3 . . . Ν9 составляет 2,56 А. Выход атомов С3 и С7'
из плоскости С1С2С4С5 и CsCeCaCj соответственно составляет 0,64 .А и
—0,63 А. Это больше, чем в случае конформаций двойного кресла
(0,51 А для кетона XXVII " ) , но меньше, чем для идеального циклогек-
сана (0,73 А). Таким образом, цикл, имеющий форму кресла в конфор-
маций кресло-ванна, искажен гораздо меньше, чем в конформаций двой-
ного кресла. Эти данные были подтверждены изучением структуры ке-
тона (XXXIII) " . Молекула (XXXIII) также принимает конформацию·
кресло-ванна с расстоянием С3 •.. N9, равным 2,61 А, и выходом атомов
С3 и С7 из плоскостей QC2C4C5 и C5C6C8Ci на 0,64 А и —0,65 А.

, В литературе имеются данные о ваннообразных структурах гетеро- ч

аналогов бицикло[3,3,1]нонана. Так в работах6 2·6 3 найдено, что один из-
изомерных спиртов (XXXIV), получающихся при кислотном расщепле-
нии производных фосфатриоксаадамантана, имеет конформацию крес-
ло-ванна, причем форму ванны принимает гетероциклическое кольцо
(см. раздел VI, 3).

•СООМе

{XXXIV) (XXXV) (XXXVI)

В работах4 6·4 7 было показано, что 9-окса-3,7-дитиабицикло[3,3,1]но-
нан (XXXV) имеет конфигурацию кресло-ванна; плоскости, проходя-
щие через атомы C2S3C4 и C6S,C8, пересекают плоскость, проходящую
через атомы QCsOg под углами 76°9' и 1Г45' соответственно. Расстоя-
ние S s . . . О9 составляет 2,84 А (дискуссию и другие данные — см. раз-
дел VI ,5) .

Данные о геометрии конформаций (II) в растворе единичны. В ра-
боте в4 методом сдвиговых реагентов была установлена конформация-
кресло-ванна для эпимерных оксиэфиров (XXXVI) и (XXXVII), однако
геометрические параметры определены не были (см. также 6 5).

-ОН

х С О О М е Me

(XXXVII) (XXXV11I) ° (XXXIX, R = OH, R ' = M e )

(XL, a-R = OH, R'= H;6-R = I
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Изучение индуцированных химсдвигов позволило установить, что соеди-
нения (XXXVIII), (XXXIX) и (XL а) имеют конформацию кресло-ван-
на с расстояниями С,—С9, соответственно равными 2,8, 2,65 и 2,65 А 6 в

(сравнить52).
Таким образом, данные рентгеноструктурного анализа подтвержда-

ют вывод раздела II о том, что введение 3-эндо-заместителя стабилизи-
рует конформацию кресло-ванна. Несмотря на небольшое число экспе-
риментальных данных, можно сделать вывод, что кресловидный цикл в
этой конформации ближе по своей геометрии к обычным производным
циклогексана. Наименьший внутримолекулярный контакт в конформа-
ции (II) будет для дистанции С 3 . . . С9 (или С 7 . . . С9, в зависимости от
нумерации).

Данные о геометрии конформации (III) в литературе отсутствуют.

V. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ О ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРАХ
КОНФОРМАЦИОННЫХ РАВНОВЕСИИ СИСТЕМЫ

Одним из основных вопросов конформационного анализа бициклоно-
нанов является, как уже было отмечено в разделах II и III, установление
относительной стабильности различных конформации и установление
энергетических соотношений между ними. Качественные данные можно
получить на основании данных по эпимеризации соответствующих функ-
циональных производных. Так, например, в препаративном отношении
полная изомеризация карбометоксипроизводных протекает в направле-
нии XLII->-XLI, а также XLIII-vXLIV67 *. Учитывая конфигурацию сое-
динений [см. разделы (VI, 3 и VI, 4)] и принимая, таким образом, что
эпимеризация контролируется изменением конформации скелета, эти
данные позволяют установить качественный ряд уменьшения энергии
конформации: двойная ванна>кресло-ванна>двойное кресло67.

МеООС

МеООС

МеООС

МеООС

МеООС-

(XLI)

О

СМе,

(XIJII)

С М е
»

МеООС

МеООС

(XL1V)

Вероятно, первые количественные данные были получены при изуче-
нии эпимеризации эфиров (XLV) и (XLVI) 68. Положение равновесия
достигалось, исходя из обоих изомеров, и наблюдаемая константа рав-
новесия соответствует величине AG20°=—2,7 ккал/моль. Исходя из вы-
шесказанного (см. разделы II и IV), эта величина была приписана раз-
нице свободных энергий конформации (I) и (II).

* Работойв 7 следует руководствоваться и для расшифровки принятой в данном
обзоре системы определения положений (бушпритное, планширное и т. п.).
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СООМе

-СООМс
(XLV) (XLVi) (XLV1I)

Аналогично эпимеризация изомерных спиртов (XLVII) и (XLVIII)
дает равновесную смесь с содержанием э/сзо-изомера (XLVIII) 96,4%·
Отсюда AG94°=—2,51 ккал/моль™. Эта величина хорошо коррелируется
с найденной в работе6 8. Поскольку величина AG не зависит от природы
заместителя, это отчетливо показывает, что разница в свободных энер-
гиях может быть приписана только измерениям конформации скелета.

Если принять равную энтропию для обоих конформеров *, то величи-
на АН будет равна 2,5—2,7 ккал/моль, и ее можно сравнить с энергети-
ческой разницей, вычисленной теоретически (см. раздел III). Нетрудно
видеть, что совпадение экспериментального и вычисленного значений
достаточно хорошее.

В работез э найдено, что спектр ПМР кетона (XLIX) зависит от тем-
пературы. Если принять, что это связано с конформационным равнове-
сием, то величина АН может быть оценена 1 ккал/моль. Авторы счита-
ют, что это также связано с равновесием типа 1^=11, и постулируют боль-
шую стабильность конформации XXIII (см. раздел 6.2).

XXIII
--он

Me 7 Me

(XLIX) (L) (LI)

Количественные данные о равновесии конформации Пч*Ш отсутст-
вуют.

В литературе имеются также отрывочные данные о величинах AGR

заместителей во фрагменте бициклононана. Так, эпимеризация бицик-
ло[3,3,1]нонан-2-олов (L) и (LI) дает величины AGOH равные —0,56
ккал/мольвэ и —0,559 ккал/моль70 в изопропиловом спирте и —0,25
ккал/моль6* в циклогексане. Интересно сравнить эти величины с най-
денными для циклогексанола: 0,52 ккал/моль для апротонных сред и
0,87 ккал/моль для протонсодержащих растворителей71. Аналогичным
образом равновесная эпимеризация 2-метилбицикло[3,3,1]нонанов при
230° приводит к смеси, содержащей 72% экваториального изомера72.
Отсюда можно оценить величину AGj$°° приблизительно в 1 ккал/моль.
Эта величина также значительно меньше наблюдаемой для метилцикло-
гексана (1,70 ккал/моль11). Уменьшение величины AGR для положения
2 системы бицикло[3,3,1]нонана можно приписать наличию экваториаль-
ного эндо-Я2... эндо-Н8-взаимодействия 3 9 · в 9 .

Интересные данные по эпимеризации спиртов (XL а и б) получены
в работе 52. Авторы нашли, что величина свободной энергии AG0H при
установлении равновесия в изопропиловом спирте при 110° равна
—2,18 ккал/моль. Очевидно, что эта разница не может быть отнесена к
равновесию типа 1^11, а представляет собою именно конформацион-

* Т а к о е п р е д п о л о ж е н и е о з н а ч а е т п р е н е б р е ж е н и е в к л а д о м а л ь т е р н а т и в н о й к о н -
ф о р м а ц и и к р е с л о - в а н н а и , с л е д о в а т е л ь н о , э н т р о п и е й с м е ш е н и я — R ( d \ )
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ную энергию заместителя (ср. 7 1). Разница в энергиях конформаций
должна таким образом быть обусловлена наличием двух неблагопри-
ятных 1,3-аксиально-аксиально взаимодействий СН 2 . .. ОН в конфор-
маций (XL а) по сравнению с двумя аналогичными взаимодействиями
С Н 2 . . . Η в конформаций (XL6). Принимая первое равным 1,9 ккал\
моль2, а второе — 0,85 ккал/моль2'п, можно оценить разницу в энерги-
ях конформаций в 2,1 ккал/моль. Это очень хорошо согласуется с экс-
периментально найденной величиной. Очевидно также, что система би-
цикло[3,3,1]нонана может быть удобной для изучения 1,3-взаимодейст-
вия функциональной и метиленовой групп.

(XL)

VI. КОНФОРМАЦИЙ ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ
И ГЕТЕРОАНАЛОГОВ БИЦИКЛО[3,3,1]НОНАНА

Ь Применение ИК- и ПМР-спектроскопии
для установления конформаций бицикло[3,3,1]нонанов

Особенности применения ИК-спектроскопии для качественного от-
несения конформаций в ряду бицикло[3,3,1]нонана основаны на следу-
ющем обстоятельстве. Известно, что для полициклических и каркасных
соединений, в которых две или более метиленовых группы очень сильно
пространственно сближены, наблюдаются аномальные полосы ИК-пог-
лощения С—Η-связей в области 1490 и 2990 см~\ ИК-спектры большо-
го числа производных бицикло[3,3,1]нонана также показывают наличие
таких полос, что было приписано 3-СН 2 . . . 7-СН2 взаимодействию в кон-
формаций двойного кресла 43·44· "· " . Доказательство основано на сле-
дующих данных4 3·7 3: соединение (LII а) имеет полосу поглощения
1490 см~\ Отсюда следует, что возможные С3—С9 или С,—С9 взаимо-
действия не являются причиной данной аномалии. В ИК-спектре дей-
терированного соединения (LII б) интенсивность этой полосы уменьше-
на примерно вполовину. Отметим, что в ИК-спектре адамантана погло-
щение в этой области отсутствует75.

Me

(Mil) (L1V) (LV, R=MeCO;

LVa, R = H)

Высокочастотная полоса валентных колебаний при 2990 см~1 и по-
лоса деформационных колебаний при 1490 см~1 указывает на существо-
вание конформаций двойного кресла. Так были расшифрованы конфор-
маций кетона (XXVII) и его экваториального эпимера50, ацетатов
(LIII) 76, (LIV) 77, (LV) 78, спирта (XLVIII) в9 и его 1,5-диметильного
аналога79, конденсированных систем (LVI) и (LVII) 80 и т.д. Подчерк-
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нем, что именно методом ИКС была доказана конформация двойного
кресла для большого числа 9-гетероаналогов системы бицикло[3,3,1]-
нонана, как например, соединений (LVIII) 8l~83, (LIX) 8 4 · 8 5 , (LX) 85

( L X I ) 8 6 и (LXII) 87

R=Br, I.OAc.HgX R = H,C1 (LX)
(LVIII) (LIX)

ИК-спектроскопия позволяет надежно отличать производные бицик-
ло[3,3,1]нонана от изомерных производных бицикло[4,2,1]нонана "· 8 2 · 8 3 ·
85· ".которые часто получаются в смеси при синтезах на основе циклоок-
тадиена 88.

-он
(LXI) (LXII) (LX111) (LXIV) (LXV)

Однако в ряде случаев было отмечено, что указанные полосы погло-
щения не проявляются в ИК-спектре, даже если соединение заведомо
существует в конформации двойного кресла. В качестве примера укажем
на аминоспирты (LXIII) и (LXIV) 8Э. Эти полосы отсутствуют в ИК-
спектрах кетонов (LXV)77 и (LXVI)80. В последнем случае, наличие три-
гонального атома углерода обусловливает более плоскую конформацию
цикла, и отсюда существенное удаление друг от друга трансаннулярных
метиленовых групп (см. раздел VI, 2).

Применение спектроскопии ПМР в данном ряду базируется на об-
щеизвестных закономерностях изменения химсдвига а- и е-протонов и,
что более важно, на зависимости константы МНн от диэдрального угла
(уравнения Карплуса). В конформации (I) вицинальные константы про-
тонов HtHU, Н2 еН3 соответствуют ае- или ее-константе (2—4 гц), а кон-
станты протонов Н2аН3о — αα-константе (9—12 гц) для производных цик-
логексана. Для конформации ванны должны наблюдаться две большие
^константы взаимодействия протонов HjH^ (~10 гц) и Η2αΗ3 (~10—
12 гц). Наибольшая трудность связана со следующим обстоятельством:
в конформационном равновесии существует две альтернативные конфор-
мации кресло-ванна, что приводит к нерезкому изменению в величинах
КССВ. Кроме того, уплощение крыльев молекулы в конформации (I) так-
же приводит к росту константы J H I H 2 0 (детальную дискуссию по этому
вопросу см. в 9 0 ) . Для монозамещенных производных типа (VI, V, L, LI,
LIV, LV, LVIII) и т. д. четкое отнесение может быть достигнуто при об-
наружении большой (свыше 9 гц) вицинальной КССВ. Все эти законо-
мерности широко использовались как для выяснения конфигурации за-
местителей, так и для конформационного отнесенияъг·77·91-100.

В частности, методом ПМР была доказана конформация спирта
(XLVIII)69·" и его 1,5-диметильного аналога79, эпимерных спиртов
(XL а и б) 5 2 · 5 3, эпимерных хлоркетонов типа (XXVII)50, изомерных бром-
гидринов (LXVII) и (LXVIII) в 8 и дибромкетона (LXIX) в8.
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НО

(LXVI) R-H,Me
(LXVU)

2. Конформации карбонильных производных бицикло[3,3,1]нонана
и его моногетерозамещенных аналогов

Прежде всего следует остановиться на конформационном анализе мо-
ногетеробицикло[ЗД1]нонанов. Уже из вышеприведенного материала яс-
но, что большой круг разнообразных 2-эндо-, 2-экзо- и 3-эндо-монозаме-
щенных производных бицикл о[3,3,1]нонана, а'также 9-гетеробицик-
ло[3,3,1]нонанов существует преимущественно в конформации двойного
кресла. Введение гетероатомов в положения 1, 2 и 3 также, по-видимому,
не должно качественно менять относительную стабильность конформа-
ции. Хотя данные по 1-азабицикло[3, 3, 1]нонану отсутствуют, существова-
ние 1,5-диазапроизводных (XVI, X = N ) и (XXXI) в конформации
двойного кресла 5S подтверждает эту точку зрения/Имеются литератур-
ные данные, указывающие, что 3-азабициклононаны также существуют
в конформации двойного кресла при значительной модификации заме-
стителя у атома азота. В качестве примеров можно указать амин
(LXX)93, Ы-бензоил-3-аза<бицикло[3,3,1]нонан (XIV, X=NCOPh) 9 2 , то-
зилат (LXXI) 101 и иодгидрат М-метил-3-азабицикло[3,3,1]нонана91. Ме-
тодом ПМР было найдено, что производные 3-оксабицикло[3,3, 1]нонана
(XIV, Х = О ) 1 0 2 · 1 0 3 и даже 3-тиа<5ицикло[3,3,1]«онан (XIV, X = S ) 90

существуют в конформации двойного кресла. Последний пример пока-
зывает, что даже введение такого объемистого гетероатома, как сера,
не приводит к качественным изменениям в относительной энергетиче-
ской стабильности конформации (I) и (II).

:ooBt

Ме3С-'' Ν - κ TsN
б

(LXX) (LXXI) (LXX11, X = CH)
(LXX1II, X = N)

Рассмотрим теперь проблему конформационного анализа карбониль-
ных соединений. Известно, что введение карбонильной группы в шести-
членный цикл значительно уменьшает разницу в энтальпиях конформа-
ции ванны и кресла; например, энтальпия конформационного
перехода ванна-кресло для циклогексанона составляет всего
3,9 ккал/мользв·39·68. Поэтому введение карбонильной группы должно
уменьшить разницу в энергиях форм (II) и (I). С другой стороны, (вве-
дение тригонального атома должно вызвать некоторое уплощение и,
следовательно, некоторую стабилизацию формы (I) за счет уменьше-
ния 3—7-отталкивания. При введении С = О-группы в положение 3 от-
талкивание атомов водорода вообще снимается и остается лишь 7-эндо-

3 Успехи химии, № 3
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Н . . . З - С = О взаимодействие. Каким будет баланс этих факторов,/
предсказать трудно, особенно для 2-кетопроизводных 3 9 · 6 8 . j

Экспериментальные данные по 9-кетопроизводным показывают, что
эти соединения существуют в конформации двойного кресла (см.
XXVII45·50, L I I " · ' 3 , Π Ι Γ 6 , LVI 8 0). Этого следовало ожидать, посколь-
ку фрагмент карбонильной группы входит в жесткую систему мостика
и уменьшение барьера вращения вокруг связи СО—С не может влиять
на энергию конформации. Однако данные о 3-кетопроизводных противо-
речивы. Конформация самого бицикло[3,3,1]нонан-3-она (LXXII) была
изучена методом ПМР с использованием сдвигового реагента 65. Из за-
висимости величины химсдвига протонов от концентрации сдвигового
реагента следует, что карбонилсодержащее кольцо должно быть плос-
ким. Это было интерпретировано как наличие конформационного равно-
весия форм двойного кресла и кресло-ванна с соотношением конформе-
ров 1:1. Однако данные УФ- и ПМР- спектров для 1-азааналога
(LXXIII) скорее свидетельствуют о сильном уплощении в конформации
двойного кресла 10\ Вероятно, нужно было бы продолжить детальное
изучение конформации родоначального кетона (LXXII).

Отметим, что рентгеноструктурным анализом была установлена гео-
метрия продукта расщепления, иодметилата ликоподина (LXXIV)105.
Фрагмент бициклононанона принудительно занимает конформацию
двойного кресла, поскольку циклогексановое кольцо входит в состав же-
сткой полициклической системы, а метильная группа закрепляет кон-
формацию другого кольца.

х о о
Me (LXXV,a-X = CH2; (LXXVI) (LXXVII)

(LXXIV) 6-X = 0)

Данные о конформации 3-метиленбицикло[3,3,1]нонана (XII) отсут-
ствуют. Учитывая, что 3,7-диметиленбициклононаны типа (XXX) сущест-
вуют β конформации двойного кресла53, можно думать, что эта же кон-
формация будет предпочтительной и для кетонов типа (LXXV).

При анализе конформационного равновесия аминокетонов необхо-
димо учитывать дополнительный фактор, а именно взаимодействие этих

групп в направлении R3N + С = 0->-R3N—С—О~. Трансаннулярное вза-
имодействие такого типа довольно хорошо изучено10(i-10?. В ряду бицик-
лононана с этой проблемой сталкиваются при изучении псевдопеллетье-
рина (LXXVI). ИК-спектр этого соединения указывает на отсутствие
трансаннулярного взаимодействия аминного и карбонильного фрагмен-
тов типа (LXXVII), что свидетельствует в пользу конформации двойного
кресла 108. Это также было подтверждено данными дипольных момен-
тов1 0 8 и измерением констант Керра и 0 . Из спектров ПМР был сделан
вывод, что псевдопеллетьерин находится в конформации (LXXVI) с силь-
ным искажением пиперидонового кольца9S. Возможно, что сильное уп-
лощение запрещает трансаннулярное взаимодействие амино- и карбо-
нильной групп в соединениях типа (LXXVIII) 107. Аналогично, аминоке-
тон (LXXIX) также существует в конформации двойного кресла. Отсут-
ствие взаимодействия аминного и карбонильного фрагментов и конфор-



Конформационный анализ бицикло[3,3,1]нонанов 427

мации кресло-ванна вытекает из данных дипольных моментов и ИК-
спектров111. В ИК-спектрах нет полос при 2600—2800 см~1112-113.

Рентгеноструктурный анализ свободного радикала (LXXX), сущест-
вующего в димерной форме, показал, что молекула принимает конфор-
мацию двойного кресла114. Возможно, однако, что образование четы-
рехкоординационного азота при образовании димера и ответственно за
дестабилизацию конформации кресло-ванна. Другой азотоксильный ра-
дикал— (LXXXI), судя по данным ЭПР-спектра и дипольному моменту,
также существует в конформации двойного кресла 115.

R—N

(I.XXIX)

II
о _

(Ι.ΧΧΧ)

.We ,

\\

\

о

\ J U

\l

Μ

(LXXX1)

-.We

-We

Данные по 2-кетопроизводным отрывочны. Экспериментальные дан-
ные для кетона (LXV) отсутствуют (см. раздел III), хотя ряд авторов
на основании косвенных аргументов склоняется к предпочтению для
конформации кресло-ванна39·68. Для 3,3-диметил-2-кетопроизводного
было найдено равновесие XXIII^XLIX (см. раздел V). Однако конфор-
мация более стабильного изомера экспериментально не была доказана 39.
Как указано в разделе II (см. также раздел VI, 7), введение двойной свя-
зи приводит к уплощению кольца, что способствует уменьшению напря-
жения в конформации (I). Поэтому для кетона (LXXXII а) была посту-
лирована конформация кресло-полукресло39. Авторы принимают эту же
конформацию и для диметилпроизводного (LXXXII б) на основании
сходства в УФ-спектрах с незамещенным кетоном, что, естественно, не
может считаться очень надежным доказательством.

(LXXXII, a-N = H;

6-R = Me) (LXXX1II)

/Для дикетона (LXXXIII) конформация двойного кресла была принята
на основании данных кругового дихроизма116. В ряде работ1 1 7·1 1 8 кон-

! формация двойного кресла для карбонильных производных бицик-
| ло[3,3,1]нонана была принята без доказательств. Несомненно, что вопрос
| о конформациях 2-кетопроизводных нуждается в дополнительном иссле-
ι довании. Желательно сделать это на простых моделях, таких как кетон
S (LXV).

3. Конформация кресло-ванна

Рассмотрим равновесие монозамещевных бициклононанов Уч*У1ч^
^=tVII (раздел II). Как было сказано в этом разделе, введение 3 (или 7)
эндо-заместителя приводит к дестабилизации конформации (V) и ста-
билизации ваннообразных конформации. Встает вопрос о соотношении
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конформации (VI) и (VII). Положение равновесия между ними должно
быть обусловлено наличием двух сильно дестабилизирующих 1,3-й,а-
взаимодействий типа X... СН2 в конформации (VII). В то же время в
конформации (VI) заместитель будет занимать бушпритное положение
и, следовательно, разница в энергиях конформации (VI) и (VII) будет
связана с энергией перехода Х-эндо^Х-бушприт. Поскольку бушпритное
положение в конформации (VI) можно приближенно рассматривать как
эквивалентное экваториальному в конформации (VII а), то энергетиче-
скую разницу перехода VII^VI можно приближенно оценить по энер-
гии перехода VII a ^ V I . Выше уже приводились данные по эпимериза-
ции спиртов (XL) ( A G O H ~ 2 , 1 8 ккал1мольъг). Таким образом, в конфор-
мационном равновесии будет сильно преобладать конформер (VI); ве-
личину энергетической разницы можно, в соответствии с данными раз-
дела V, оценить по величине Х . . . С Н 2 для 1,3-дизамещенных циклогек-
санов.

Сказанное справедливо и при выборе между альтернативными кон-
формациями типа (X). Бушпритное положение будет занимать замести-
тель с большей величиной X. . . СН2 отталкивания. Преимущественные
конформации спиртов (XL)52 и (LXXXIV)119 подтверждают это положе-
ние.

Этот вывод справедлив, однако, только для эквивалентных колец во
фрагменте бицикло[3,3,1]нонана. Введение гетероатомов в принципе
может сильно изменить энергетическую разницу форм ванна и кресло
и, как следствие, нарушить вышеуказанное соотношение между конфор-
мациями (VI) и (VII). Для простых моно- и дигетероаналогов циклогек-
сана обычно не наблюдается слишком резкого изменения этой величи-
ны 8 · 4 0 , но в более сложных случаях этот фактор необходимо учиты-
вать.

Рассмотрим далее влияние природы 3-эндо-заместителя на сущест-
вование этой конформации. Очевидно, что такой большой заместитель,
как трет-бутильная группа, должен сильно дестабилизировать конфор-
мацию (I) и иметь чрезвычайно большую тенденцию занять бушприт-
ное положение в конформации кресло-ванна (II). В качестве примера
можно привести диэфир (XLIV) в7 в сравнении с эпимерным эфиром
(XLI). З-Зядо-метильная группа также стабилизирует конформацию
кресло-ванна (см. соединения XXXVIII) 66, XXXIX66, XL "• 6 6 ) . Интересно,
что в кетоне (LXXXV) данные ПМР-спектра указывают на нормальную
форму карбонилсодержащего кольца 68. Далее, введение 3-эндо-карбо-
хсильной или карбалкоксильнои группы также приводит к конформации
(II) (см. соединения XXXVI и XXXVIIе4, XLII6 7, XLV68, LXXXVI67).

ШИСН 2—\^/K Ме-

но-
(LXXX1V) (LXXXV) (LXXXVI)

Более сложная ситуация наблюдается для дикислоты (LXXXVII а) и ее
диэфира (LXXXVII б). Существенное уширение линий при —90° в спект-
ре ПМР указывает на существование конформационного равновесия. Од-
нако наличие двух усредненных КССВ /2 а з и /2е3> равных 7,1 гц, указы-
вает на преобладающий вклад конформации кресло-ванна120. -Это, по-
видимому, будет справедливо и для других г{ыс-3,7-дизамещенных бицик-
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лононанов типа (X). Как показывает пример соединений (XXXII)59·60,
(XXXIII) " , (LXVIII) и (LXIX) в8, введение атома брома также приводит
к стабилизации формы кресло-ванна. В ряду циклогексана атом брома
не рассматривается как «большой» заместитель (AGB r~0,38 ккал/моль71),
поскольку для брома наблюдается взаимная компенсация объема и дли-
ны связи. Однако в ряду бицикло[3,3,1]нонана атом брома выступает
как «большой» заместитель.

Сказанное справедливо и для простых гетероаналогов (см. раздел VI,
2). Так, например, конформация кресло-ванна была найдена для азаби-
циклононанов (XXXII)59·60, (XXXIII)61, (LXXXVIII)121, (XXXIX)101. Хотя
иодгидрат 3-метил-3-азабицикло[3,3,1]нонана91, хлоргидрат91 и бромгид-
рат4 2 (XXIV) имеют конформацию двойного кресла, иодметилат (ХС)
существует в конформации кресло-ванна91

•COOR ROOC

-COOR
(LXXXV1I, a-R = H;

ROOC
б-R = Me) (LXXXVIII)

Интересен вопрос о влиянии на конформационную предпочтительность
3-эндо-гидроксильной группы. Во-первых, это заместитель умеренной ве-
личины, во-вторых, гидроксильная группа способна к образованию во-
дородных связей, что может оказывать значительное влияние на поло-
жение конформационного равновесия (см., например,1 2 2·1 2 3). Как показа-
но методом ПМР, резко преобладающим конформером 3-эндо-бицик-
ло[3,3,1]нонанола (XLVII)65·69·99 и его 1,5-диметильного производного79

является конформация кресло-ванна. Однако изучение температурной
зависимости КССВ и применение сдвиговых реагентов указывают на су-
ществование равновесия65·79·99. Неясно, однако, какая форма, (XCI) или
(ХСП), находится в равновесии с основным конформером (см. также
раздел VII).

COOEt

COOEt

(LXXXIX)

XLVII

(ХС) (ХСП)

Эта же проблема была детально изучена на примере За-гранатанола
(ХСШ). В работе89 был использован метод конформационного отнесе-
ния, основанный на изучении формы основных полос валентных колеба-
ний ОН в ИК-спектрах. Авторы пришли к выводу, что амины (ХСШ) и
(XCIV) существуют в конформации двойного кресла. Однако детальное
изучение этой проблемы показало, что За-гранатанол существует, глав-
ным образом, в конформации кресло-ванна (ХСШ б) 97~". По-видимому,
это справедливо и для амина (XCIV). Отметим, что анализ формы ли-
ний в ИК-спектре следует использовать с осторожностью (см. дискус-
сию1 2 4).
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Me—N Me—N

(хеш)

•ОН N

ОН

(XC1V) (XCVj

NMe

(XCVI, R=H)

(XCVI1, R = Ph)

Интересные данные были получены при изучении аминоспирта (XCV).
ИК-спектр показывает присутствие внутримолекулярной водородной
Связи в этом соединении; таким образом, стабилизация конформации
двойного кресла за счет водородной связи преобладает над стерическим
отталкиванием, создаваемым эядо-функциональной группой. Этот ре-
зультат, вероятно, носит общий характер (ср. раздел VI, 6). Здесь умест-
но также обсудить данные по конформационному равновесию Зр-грана-
танола (LXIV) и аминоспирта (XCVI). В ИК-спектре аминоспирта
(XCVI) внутримолекулярная водородная связь отсутствует, что исклю-
чает альтернативную конформацию кресло-ванна93·125. По данным ПМР-
спектра, преимущественной конформацией Зβ-гpaнaтaнoлa является
двойное кресло (LXIV). Однако в ИК-спектре обнаруживается внутри-
молекулярная водородная связь, указывающая на присутствие неболь-
шого (~11%) количества конформации (XCVIII)89·91. Следует сказать,
что изменение конформации может наступать при протонировании би-
циклических аминов и их производных (см. также раздел VI, 6). На-
пример для протонированной формы амина (XCVII), существующего в
конформации двойного кресла, принимается конформация (XCIX)126.

LXIV

Me,
ОН

(XCVIII) (ХС!Х) (С)

В случае сложных полициклических соединений 3-эндо-группа может
принудительно входить в состав конформации двойного кресла. Напри-
мер рентгеноструктурным анализом производного трицикло[5,3,1,12'"]до-
декана (С) было найдено, что гидроксильная группа находится в эндо-
положении т . Расстояния С 9 . . . О и С 4 . . . С и равны 2,90 и 3,09 А соот-
ветственно. Сравнение углов показывает, что оксигруппа три С12 вызы-
вает даже меньшее уплощение фрагмента C8C9Ci0, чем метиленовая груп-
па СЦ —фрагмента С3С4С5.

Как было указано в разделе IV, фосфорсодержащий спирт (XXXIV)
принимает конформацию кресло-ванна. Такая конформация определяет-
ся наличием сильного отталкивания двух 3,7-эндо-заместителей в кон-
формации двойного кресла. Интересно, что форму ванны принимает ди-
оксафосфоринановое кольцо62, что, по-видимому, связано с общим стрем-
лением группы Р = О к экваториальному положению63.

В заключение отметим, что проблема изучения конформации произ-
водных бицикло[3,3,1]нонана, имеющих малый заместитель в 3-энс?о-поло-
жении, представляет большой интерес и заслуживает детального изуче-
ния.
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4. Конформация двойной ванны

Как обсуждалось в разделе II, конформацию двойной ванны следует
ожидать для 3,7-дизамещенных типа (IX). При достаточно большом объ-
еме заместителя X преимущественной конформацией должна 'быть двой-
ная ванна (XI), а не кресло-ванна (X). Соотношение форм (X) и (XI)
зависит от соотношения величины 1,3-а,а-отталкивания фрагмента
X.. . СН2 с величиной энергетической разницы конформаций кресло-
ванна, которая при переходе X—>-Х1 должна быть того же порядка, что
и для незамещенного циклогексана. Как показывают примеры соеди-
нений (XL a) 52, (LXXXIV) 119 и (LXXXVII) 120, гидроксильная, карбо-
ксильная и карбметоксильная группы не могут дестабилизировать кон-
формацию (X). Однако наличие двух аксиальных карбометоксильных
групп в положении 2 и 3 в эфире (CI) приводит к значительной деста-
билизации конформаций кресло-ванна67. Поэтому преимущественной
конформацией является двойная ванна (XLIII), причем карбометоксиль-
ные группы занимают бушпритное и планширяое положения. Необхо-
димо заметить, что наличие тригонального атома в положении 9 должно
способствовать уменьшению напряжения в конформаций ванны.

MeOOC он

-СООМе
(CD (СИ)

Изучение ПМР-спектров показало, что диол (СП) существует в кон-
формаций двойной ванны 120. Несомненно, что это связано с 'большим
объемом заместителей.

5. Конформаций ди- и полигетероаналогов бицикло[3,3,1]нонана.
К вопросу о стерическом и орбитальном взаимодействии гетероатомов

Как упоминалось выше (раздел II), введение гетероатомов для сое-
динений типа (XV) или (XVI) может привести к усилению несвязанных
взаимодействий в силу укорочения связи С — гетероатом. Измерение ди-
польных моментов серии соединений типа (СШ) показало, что 1,3-диок-
сановое кольцо находится в конформаций кресло-ванна128. Аналогичная
конформация была приписана соединению (CIV)129, что, однако, вероят-
но, связано с наличием эндо-заместителя (ср. также XXXIV62·63). Диа-
мины (XVI, Х=азот) и (XXXI) 58 находятся в конформаций сильно
уплощенного двойного кресла. Таким образом, рассматриваемая проб-
лема далека от своего разрешения, и необходимо было бы продолжить
ее изучение на более простых примерах типа (CV).

хс6н4-
,4

(СШ) (C1V)
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Чрезвычайно интересная конформационная проблема возникает для
3,7-дигетеро|бицикло[3,3,1]нонанов типа (CVI). В этих соединениях от-
сутствует стерическое отталкивание атомов водорода (Χ, Ζ — азот, кис-
лород, сера).

Χ ώ

(CVI) (CVII) (CVI1I)

Однако здесь можно предусмотреть три других типа взаимодействия.
Во-первых, это диполь-дипольное (либо заряд-зарядное) взаимодейст-
вие. Для обычных гетероатомов этот фактор должен лриводить к оттал-
киванию, причем величина его должна уменьшаться вниз по группе эле-
ментов Периодической системы. Во-вторых, это чисто стерическое от-
талкивание, связанное на малых расстояниях с отталкиванием запол-
ненных электронных оболочек (CVII). Это взаимодействие обычно хо-
рошо апроксимируется формой Хилла 1 3 < ) · 1 3 1 , либо другим аналогичным
выражением для потенциала взаимодействия 3 0 · 1 3 2 . Такое взаимодейст-
вие предполагает сферическую симметрию электронных оболочек типа
(CVII) 3 (дискуссию об «объемистости» электронной пары см.133). В-треть-
их, это орбитальное взаимодействие, названное «эффектом хоккейных
клюшек»16·22·134·135 (CVIII). Рассмотрим последний вопрос подробнее.
Для заслоненной (или гош) конформации дизамещенного этанового
фрагмента типа (CIX) перекрывание орбиталей приведет к образова-
нию связывающей (CIX а) и разрыхляющей (CIX б) комбинаций и, как
следствие, к расщеплению уровней (СХ). Такое взаимодействие орби-
талей «через пространство»22·134·136-141 приводит к дестабилизации кон-
формации (CIX) (разрыхление действует сильнее, чем связывание137·142).
При наличии структурных возможностей должна возникнуть какая-ли-
бо альтернативная конформация (например, транс). Для СVIII альтер-
нативной конформацией будет служить кресло-ванна. Величина оттал-
кивания должна быть пропорциональна перекрыванию и увеличиваться
вниз по группе элементов Периодической системы22.

0 онΛ
* * *<"\,

(С1Х) (СХ) (CXI)

Однако, как впервые показал Гоффман 1 3 6 · 1 3 7 · 1 3 9 , группы X и Ζ могут
взаимодействовать не только «через пространство», но и «через связь»,
что может резко изменить картину относительной стабильности конфор-
мации 1 4 3 · 1 4 4 . Модельные соединения бициклононанового ряда дают удоб-
ную возможность выделить эффект орбитального отталкивания, посколь-
ку мы можем пренебречь взаимодействием гетероатомов через четыре
связи.
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Рассмотрим экспериментальные данные по конформациям соедине-
ний типа (CVI). Наиболее изучены производные 3,7-диазабицик-
ло[3,3,1]нонана (биспидина). (см. раздел VI, 6). Для 3,7-диметилбиспи-
дина (XXV) расчетные41 и экспериментальные данные145 свидетельству-
ют о преобладании конформации двойного кресла.

В работах46·"•90 была изучена большая серия соединений типа
(CVI). Для всех случаев, когда в положении 3 и 7 находились два атома
кислорода либо атом кислорода и серы (XXVIII, CVI, X = Y = Z = O;
X = S , Y = Z = O), преимущественной конформацией оказывалось двой-
ное кресло (геометрию XXVIII см. раздел. IV). Однако ситуация резко
меняется, когда в 3,7-положении находятся два атома серы (или сера и
селен90). Соединение (XXXV), а также соединения типа (CVI, X = Z = S,
Y=CH 2 ; X = S , Y=O, Z = Se) существуют в конформации кресло-ван-
ц „ 46 47, 90
rid

Интересно рассмотреть вопрос о причинах такой дестабилизации кон-
формации (I). По данным геометрии соединения (XXVIII) можно рас-
считать расстояние S3. . .S7 для гипотетической конформации двойного
кресла соединения (XXXV), которое будет равно примерно 4,6 А. Это
расстояние гораздо больше, чем сумма ван-дер-ваальсовых радиусов
двух атомов серы (3,6—3,8 А1 4 6). Экспериментально найденные S...S
контакты находятся в интервале 3,6—4,0 Д1 4 7-1 5 0. Таким образом, изуче-
ние геометрии молекул типа (XXVIII) и (XXXV) поз1воляет приписать
дестабилизацию формы двойного кресла именно орбитальному отталки-
ванию.

В этой связи следует обсудить данные работы147. Авторы нашли, что
сульфоксид (CXI) имеет конформацию двойного кресла с расстоянием
S 3 . .. S7, равным чрезвычайно малой величине в 3,17 А. По-видимому,
между атомами серы действуют силы притяжения, возможно обуслов-
ленные наличием положительного заряда на сульфоксидном атоме серы.
В литературе известны примеры стабилизации сульфоксидов и сульфо-
нов за счет диполь-зарядного притяжения20·135. Отметим также, что в
молекуле S4N4 (CXII), имеющей восьмичленный цикл, который модели-
рует геометрию периметра молекулы бицикло[3,3,1]нонана, имеется
сильное притяжение двух атомов серы, в силу чего расстояние между
ними составляет 2,69 А1 5 1·1 5 2.

% ?\
\ L-N
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Me Me Me Me

(CXII) (СХ1П) (CXIV)

В заключение раздела упомянем о конформациях полигетероаналогов
бицикло[3,3,1]нонана, данные о которых отрывочны и несистематичны.
Так, известно, что производные триазафосфа-(ХХ1Х) 48 и тетраазабицик-
лононана (СХШ) 153 существуют в конформации двойного кресла.
В спектре ПМР соединения (CXIV) авторы наблюдали сигнал системы
АВ метиленовых протонов и два сигнала метильных групп при атоме
германия, что было использовано как доводы в пользу отсутствия несим-
метричной конформации типа (II) 154. Однако такая аргументация явля-
ется спорной, и для решения вопроса необходимо провести измерения
спектров ПМР при низких температурах.
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6. Конформации алкалоидов, содержащих фрагмент
азабицикло[3,3,1]нонана

Скелет азабицикло[3,3,1]нонана входит как составная часть в струк-
туры многих алкалоидов. Так, фрагмент 3-азабициклононана входит в
состав некоторых дитерпеновых алкалоидов 155; основой ряда алкалоидов
также являются производные 9-азабициклононана 1 1 7 · 1 5 6 · 1 5 7 . В качестве
примера можно привести порантерин (CXV), рентгеноструктурный ана-
лиз бромгидрата которого показал наличие фрагмента 9-азабициклоно-
нана в конформации двойного кресла157. Однако наиболее важным клас-
сом, вероятно, являются алкалоиды семейства люпиновых. В настоящем
разделе мы рассмотрим вопрос о строении этих соединений, но лишь в
той степени, в какой это касается темы данного обзора в целом. Алка-
лоиды этой группы имеют строение (CXVI) и в конформационном отно-
шении делятся на три группы в зависимости от конфигурации центров
Си и С6. Для ос-изоспартеина, который имеет эндо-заместитель при этих
центрах, наиболее устойчивой должна быть конформация двойного крес-
ла (CXVII). Рентгеноструктурный анализ гидрата α-изоспартеина пока-
зал, что это соединение действительно имеет конформацию (CXVII) с
расстоянием Ν 4 . . . Ν1β, равным 3 А158.

(cxv)

Затем было найдено, что эта -конформация должна быть приписана
катиону N-окиси изоспартеина (CXVIII) 1 5 9 · 1 6 0 . Несмотря на присутствие
эмдо-заместителя в CXVIII, конфигурация двойного кресла стабилизиру-
ется внутримолекулярной водородной связью (ср. раздел VI, 3). Это
обусловливает повышенную основность самой N-окиси, для которой так-
же принимается конформация двойного кресла 1 5 9 · 1 в 0 . Отметим также, что
конформация двойного кресла была приписана различным лактамным
структурам родственной конфигурации 1 5 β · 1 5 β - 1 6 3 . в* качестве примера
можно привести трициклический лактам (CXIX) 163. Изучение влияния
анизотропии атома азота на химсдвиги протонов метиленовых групп по-
зволило авторам сделать заключение о конформации заместителя при
атоме азота. Атом водорода занимает аксиальное положение (CXIX,
R = H), тогда как этильная группа — экваториальное. Неясно, является
ли стабилизация аксиального положения атома водорода следствием его
малого объема или наличия внутримолекулярной водородной связи.

N—R

(CXVIII) (CXIX) (СХХ)

ч

Сформулируем .конформационную проблему, возникающую для алка-
лоидов ряда спартеина (в ряде работ, по нашему мнению, она искус-
ственно усложнена1 6 4·1 6 5). Исходя из вышеизложенного, для спартеина
(СХХ) можно предположить две конформации (СХХ а и б). Одна из них
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включает бициклононановый фрагмент в конформации двойного кресла,
но имеет аксиальный заместитель при С и и, следовательно, 1{ыс-сочлене-
ние колец С и D хинолизидинового фрагмента. Альтернативная конфор-
мация включает форму кресло-ванна, но грсшс-хинолизидиновый фраг-
мент. Априорные оценки стабильности этих конформации затруднены
из-за отсутствия данных по конформационному равновесию модельных
хинолизидиновых систем. Известно лишь, что г/шнс-хинолизидин более
устойчив, чем цис-, однако количественные данные имеют разброс 2,1—
4,6 ккал/моль 16β-1β9.

(cxxi) (сххш)
сю;

Изучение соединений со спартеиновым скелетом методами ИК- и
ПМР-спектроскопии 161. 162, 164, 170, 171 показало, что цикл С имеет преиму-
щественную конформацию ванны (СХХ б). Особенно четко это следует
из величины КСОВ /н,н17, равной 10 гц 164. Конформация кресло-ванна
была найдена для 8-оксиспартеина (CXXI) 170, что доказано наличием
внутримолекулярной водородной связи.

Однако разница в свободных энергиях конформации (СХХ а) и
(СХХ б), по-видимому, относительно невелика. Во всяком случае ком-
плексообразование по двум атомам азота, возможное только в конфор-
мации двойного кресла, может значительно изменить положение конфор-
мационного равновесия. Такая координация осуществляется, например,
при взаимодействии спартеина, как бидентатного лиганда, с литий- т

или алюминийорганическими соединениями173, что дает возможность
проведения ассиметрических синтезов. Это указывает, кстати, на необ-
ходимость с осторожностью использовать сдвиговые реагенты для кон-
формационных исследований в этом ряду методом ПМР.

Аналогичное влияние оказывает водородная связь. Так, сесквипер-
хлорат N-окиси спартеина (СХХП), так же как и CXVIII, существует в
конформации двойного кресла из-за внутримолекулярной водородной
связи1 7 4·1 7 5. Чрезвычайно интересный результат получен в работе176.
Рентгеноструктурным анализом моноперхлората спартеина (СХХШ)
было показано, что эта соль приобретает конформацию двойного кресла
с расстоянием между атомами азота всего 2,79 А. Резкая разница в кон-
формациях спартеина (раствор) и его соли (кристалл) может быть свя-
зана либо с изменением агрегатного состояния, либо со стабилизацией
конформации двойного кресла внутримолекулярной водородной связью
при протонировании одного атома азота. Было бы хорошо предпринять
изучение конформации солей спартеина в растворе.

Данные о конформациях β-изоспартеина немногочисленны. В рабо-
те 1 7 0 для него была принята конформация двойного кресла. Эта же кон-
формация была найдена для моноперхлората 7-окси-производного
(CXXIV) в кристалле177. Однако возможно, что наличие водородной свя-
зи и в этом случае изменяет конформационную картину, присущую сво-
бодному основанию.
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НО

сю;
(CXX1V) icxxv)

Конформация кресло-ванна найдена для азабициклононанового фраг-
мента соединения (CXXV) m . Эти данные получены для свободного осно-
вания, и все осложняющие факторы (например, водородные связи) от-
сутствуют. Поэтому транс-сочленение хинолизидинового фрагмента
является, вероятно, более значимым фактором для конформационной
предпочтительности, чем конформация двойного кресла.

7. Конформации непредельных производных бицикло[3,3,1]нонака
и его гетероаналогов

Введение двойной связи в скелет бицикло{3,3,1]нонана приводит к
довольно сильному искажению геометрии. Наличие 2,3-двойной связи
(соединение XIII) приводит к резкому уменьшению 3,7-отталикивания
за счет уплощения циклогексенового кольца. Очевидно, что насыщенное
кольцо будет иметь конформацию кресла. В силу жесткого сочленения
циклов и требования планарности для фрагмента C^CaCi циклогексе-
новое кольцо в XIII будет жестким и неспособным к инверсии.

Экспериментальные данные подтверждают это предположение. На
примере эпимерных кетонов (CXXVI) и (CXXVII) было найдено сильное
уплощение непредельного кольца, о чем свидетельствует наличие
/45(CXXVI) =6,4 гц и /н(CXXVII) = 0 m (ср.90, раздел VI, 1).

(CXXVI, R

(CXXVII, F

R

= Ph, R'

1 = Η R1

= H)

= Ph)

(CXXVIM) (CXXIX) (cxxx)

Аналогичное уплощение было найдено для диена (CXXVIII) 90. Конфор-
мация типа (XIII) была найдена также для гетероаналогов (сульфид
CXXIX90), бензпроизводных (соединения типа СХХХ'80), стабильных
свободных радикалов типа (CXXXI) 181 (ср. соединения LXXX, LXXXI,
раздел VI, 2).

(CXXXI)

\

CH2OSO,Me

(СХХХШ)

Наибольший интерес, однако, представляет конформационная про-
блема, которая специфична для непредельных соединений рассматривае-
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мого ряда и которая может быть сформулирована следующим образом:
поскольку непредельный цикл сильно уплощен, то интересно установить
возможность сохранения конформации кресла для насыщенного цикла
в присутствии 7-эндо-заместителя в соединениях типа (СХХХП).

Имеющиеся литературные данные немногочисленны, но позволяют
тем не менее сделать определенный вывод о резком уменьшении 3,7-от-
талкивания в системах типа (СХХХП). Так, например, метилсульфонату
(СХХХШ) была приписана конформация кресла129. Интересные данные
получены в работе182. Для соединений (CXXXIV) и (CXXXV) в спектре
ПМР метальная группа дает дублет с δ 0,8 и 0,4 м. д. соответственно.
Разница в 0,4 м. д. может быть объяснена следующим образом. В соеди-
нении (CXXXIV) метильная группа удалена от фенильного кольца, по-
скольку насыщенный цикл принимает конформацию ванны. Восстанов-
ление карбонильной группы приводит к появлению флагшток-флагшто-
кового отталкивания в конформации ванны, что приводит к равновесию
форм (CXXXV а и б) и сдвигу сигнала метильной группы из-за простран-
ственной близости с фенильным кольцом. Это подтверждается химсдви-
гами эпимерных по метильной группе соединений, которые, очевидно, в
обоих случаях принимают конформацию кресла 182.

он

COOR

ОМе ОМе

(CXXXIV)
а МеО б

(CXXXV)

Конформация кресла была найдена для азотсодержащего кольца
фрагмента азабициклононана в бромгидрате подопеталина (CXXXVI) 18Ί.
Кольца A, D, Ε также имеют форму кресла, но кольцо В принимает кон-
формацию «софа»183"186. Таким образом, в этом соединении хинолизиди-
новый фрагмент имеет г^ис-сочленение (кольца С и D), тогда как в на-
сыщенном алкалоиде (CXXV) имеется гранс-сочленение178 (см. раз-
дел VI, 6). Этот пример отчетливо демонстрирует уменьшение 3,7-оттал-
кивания для непредельных систем рассматриваемого ряда. Имеются
данные о геометрии других сложных соединений, как, например, диамина
(CXXXVII)187 или р-иодбензоата дезтиглоилсвиетвнина (CXXXVIII)188·189.
Отметим, что в последнее время соединения типа (СХХХИ) стали отно-

сительно доступными в силу чего было бы желательно количест-
венное изучение рассматриваемой проблемы на простых моделях.

но
МеООС

(CXXXV1I1)

В последнее время описаны синтезы соединений типа (CXXXIX) 192-1S6

J

содержащих двойную связь в голове моста и, таким образом, демонстри-
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рующих ограниченность правила Бредта. Для этих структур непредель-
ный цикл должен быть жесткой полузанной, в которой выполняется тре-
бование наименьшего скручивания двойной связи. Насыщенное кольцо
должно иметь форму кресла. Отметим интересный ароматический угле-
водород (CXL) 197. Хотя авторы допускают существование нескольких
возможных конформеров, это представляется нереальным, ибо единст-
венная структура (CXL) должна быть жестко закрепленной.

VII. КОНФОРМАЦИИ И РЕАКЦИОННАЯ СПОСОБНОСТЬ
ПРОИЗВОДНЫХ БИЦИКЛО [3,3,1] НОНАНА

В этом р а з д е л е мы кратко рассмотрим возможности применения хи-
мических методов д л я установления конформации, а т а к ж е обсудим ос-
новные взаимосвязи конформации бицикло[3,3,1]нонанов с их превраще-
ниями.

И н ф о р м а ц и ю о преимущественных конформациях можно получить на
основании кинетических и стереохимических данных. Так, например, по-
добие относительных скоростей сольволиза эпимерных р-нитробензоатов
(CXLI) и (CXLII) подтверждает преимущественность конформации

двойного кресла, ибо в конформации кресло-ванна можно ожидать синар-
тетического ускорения сольволиза д л я анти-эпимера (CXLIII) 12Ь·126·198.

х = с н 2 , о
( C X U

Аналогичное присоединение магнийорганических соединений к кетону
(LXXIX) приводит к почти равной доле эпимерных спиртов (CXLIV а
и б) , что т а к ж е логично д л я конформации двойного к р е с л а 1 2 6 .

R—с

Ν—Me

мо 2с вн 4соо; (CXLIII)
R'=H)

(CXLII, R = H;
Rl = /i-NO2C6H4COO)

(CXLIV, a-R' = OH; 6-R = 0H)

Учитывая сильное несвязанное взаимодействие Н 3 . . . Н7 атомов, сле-
дует ожидать, что соединения ряда бицикло[3,3,1]нонана будут перехо-
дить в производные с адамантаноподобной структурой. Очевидно, что
такой переход осуществляется в конформации двойного кресла. Напри-
мер, окисление спиртов типа (CXLV) тетраацетатом свинца сопровожда-
ется циклизацией в производные оксаадамантана "•1Э9.

χ X

"%

(C.XI.VI)
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Известно большое число самых разнообразных превращений 3,7-
функциональных производных бицикло[3,3,1]нонана в производные с
адаманта-новой структурой200"207. Приведем, например, циклизации дие-
нов типа (CXLVI) и дикетона (LXXV б) в

LXXV6 *- U-^_ I LXXVa—- ( i > CXXX11
(X=OH)

производные оксаадамантана, метиленового производного (LXXV а) в
производные нораадамантана, енола (СХХХП, X —ОН) в производные
изоадамантана201"207. Отметим также, что циклизация метилсульфоната
(СХХХШ) в трициклическое соединение (CXLVII) была одной из ста-
дий в полном синтезе простагландина F2a

 129·

СХХХШ

\1 >/
но

(CXLVII)

Пространственная близость 3,7-положений д е л а е т возможным проте-
кание гидридного п е р е н о с а 1 9 1 · 2 0 8 · 2 0 7 . Дейтерообмен в кетоле (CXLVIII)
указывает на протекание внутримолекулярного стереоспецифического
2—6 гидридного сдвига 2 1 0 . Переходное состояние такой реакции д о л ж н о
включать геисг-конформацию двойной ванны. Отметим т а к ж е циклиза-
цию дикетона (LXXXIII) в п и н а к о н 7 , имеющий скелет нортвистана, а
т а к ж е циклизацию диола (LV а) в оксатвистан (CL) 211. Эти примеры
не являются исчерпывающими, они лишь показывают, к а к м о ж е т реаги-
ровать бицикло[3,3,1]нонановый фрагмент.

LXXXIII —•*- < У<\ LVa

(CI.)

Естественно, что конформационные отнесения на основании структу-
ры полученных продуктов необходимо делать с осторожностью, ибо
обычно энергии конформационных переходов малы по сравнению с энер-
гиями активации. Укажем, например, что разложение тозилгидразона
(CLI) приводит к сложной смеси продуктов, в том числе имеющих за-
крепленную конформацию кресло-ванна212·213.

N-N-Ts

(CLI) ^
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Из вышеизложенного следует, что система бицикло[3,3,1]нонана яв-
ляется удобной моделью для решения большого комплекса проблем кон-
формационного анализа. В частности, возможности, даваемые этой мо-
делью для изучения реакционной способности функциональных группи-
ровок в конформации ванна или проблем трансаннулярных взаимодей-
ствий гетероатомов и функциональных групп, часто совершенно уникаль-
ны. Несомненно, что большие возможности этой системы в применении
к проблемам конформационного анализа ждут своего проявления в бу-
дущем.
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